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A theory is derived for general motions of an inviscid vortex with circular cross- 
section and variable core area using a directed filament model of the vortex. The 
theory reduces in special cases to any of several previous vortex theories in the 
literature, but it is better suited than previous theories for handling nonlinear area- 
varying waves on the vortex core. Jump conditions across points of discontinuity 
and a variational form of the theory are also given. The theory is applied to obtain 
new solutions for several fundamental problems in vortex dynamics related to 
axisymmetric solitary waves on a vortex core, axisymmetric and helical vortex 
breakdowns and the buckling of a columnar vortex under compression. 

1. Introduction 
A theory is presented in this paper for arbitrary motions of inviscid vortices under 

the simplifying constraint that the vortex cross-section remain circular. Extension of 
the theory to treat vortices with elliptical cross-sections is fairly straightforward, 
although for brevity it is not pursued in the present paper. The theory is used to 
obtain new results for nonlinear area-varying waves on vortex cores, axisymmetric 
and helical vortex breakdowns and a phenomenon referred to here as ‘vortex 
buckling ’. 

The literature on vortex dynamics is extensive and spans a considerable time 
period, but only a few studies have turned from the solution of particular problems 
to consider a general theory of vortex motion. One notable early attempt at a general 
theory is that of Betchov (1965), who considered the motion of curved vortices with 
constant core area and no axial flow. Betchov derived equations for the curvature 
and torsion of a vortex filament by assuming that every point of the filament is 
convected with the velocity induced from the circulation of neighbouring points on 
the filament. A milestone in vortex dynamics was reached with the papers of Widnall 
& Bliss (1971) and Moore & Saffman (1972), hereinafter referred to respectively as 
WB and MS, who developed theories of vortex filaments containing axial flow. Both 
of these latter studies recognized that the velocity of a vortex may differ from the so- 
called ‘induced’ velocity, and in order to predict vortex motion the ‘external forces’ 
acting on the lateral core surface must be balanced against the ‘internal forces ’ of the 
vortex. This analysis was recently extended by Lundgren & Ashurst (1989), 
hereinafter referred to as LA, to study propagation and evolution of waves of varying 
vortex core area (i.e. axisymmetric waves). The theory proposed by LA is analogous 
in many respects to the long-wave theory used for surface waves in shallow waters. 
In  particular, the theory assumes that the radial centrifugal pressure gradient set up 
by steady motion of the vortex is undisturbed by the wave motion (which is similar 
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to  the hydrostatic pressure assumption used in nonlinear shallow-water wave 
theory). This assumption neglects the effects of radial inertia, which may be 
substantial in the light of typical experimental descriptions of axisymmetric vortex 
waves (e.g. Maxworthy, Hopfinger & Redekopp 1985) as quite nonlinear and 
propagating extremely fast. Nevertheless, the approach taken in LA, especially with 
regard to  the treatment of vortex breakdown, has been instrumental to the present 
study, and it is reasonable to expect that the results of LA should be valid in certain 
limits. 

The vortex theory in the present paper is motivated by the nonlinear water wave 
theory of Green & Naghdi (1976), in which a three-dimensional fluid layer is modelled 
by a ‘directed fluid sheet ’ (a surface-like structure containing additional vector 
variables, called directors, that typically point along the normal to the surface or in 
some other direction not tangent to  the surface). The Green-Naghdi wave theory can 
also be formulated as a variational statement of Hamiltonian form and is found to  
reduce to  the standard Korteweg4e Vries and Boussinesq nonlinear wave theories 
as special cases (Miles & Salmon 1985). 

To be more specific, a vortex is assumed in this paper to consist of a core which a t  
each infinitesimal section along its length is exposed to  an external flow composed of 
a potential vortex, a source or sink coincident to the vortex and a uniform flow (not 
necessarily directed normal to the vortex axis). The uniform external flow may 
consist of an ‘induced ’ velocity (caused by neighbouring sections of the filament 
when the vortex is curved) and some other prescribed flow field, which is restricted 
only in that the typical lengthscale L of the prescribed flow be much greater than the 
core radius a. It is assumed that the axial velocity is uniform across the core and that 
the core rotates as a solid body. This assumption, which is made for simplicity, 
presumes that the effect of the internal core dynamics on the overall vortex motion 
can be expressed adequately through integral quantities and is not very sensitive to  
the precise form of the core velocity profile. Additionally, it is assumed that the 
product of vortex curvature K and core radius a is small compared to  unity. To 
summarize, the four assumptions - ~a 4 1, a/L 4 1, uniform axial velocity and solid- 
body rotation in the core, and circular core cross-section - are all that are necessary 
for development of the present theory from the general equations of inviscid 
incompressible flow. These same assumptions are also made in the previously 
mentioned vortex theories proposed by LA, MS, WB and Betchov. 

The vortex motion is determined by invoking a model of the vortex core as a 
‘directed filament ’, with two directors, which is subject to  ‘contact body forces’ 
arising from forces exerted on the lateral core surface by the external flow. The 
general equations of motion for the vortex core are developed from the theory of 
Caulk & Naghdi (1979) for twisting jets together with an extended version of the 
external forces derived by MS. These equations include conservation of mass, a 
balance of ‘ordinary’ momentum, and a balance of ‘director’ momentum (for each 
director), as well as a constraint representing incompressibility of the fluid and 
another requiring the directors to be aligned normal to the vortex axis. As mentioned 
previously, the simplification of circular core cross-section is also made such that the 
two director momentum equations become identical. 

The existing general theories of vortex motion form a type of hierarchy in that 
each theory reduces to  earlier theories in limiting cases. The present theory reduces 
to that of LA as a special case and is hence no exception to this rule. However, not 
only is the manner of derivation of the theory quite different from that used in 
previous vortex theories, but the range of problems to which the theory applies is 



Curved vortices with circular cross-section and variable core area 313 

considerably broader. By analogy, i t  is well known that the nonlinear shallow-water 
theory for free-surface waves has very limited range of applicability in comparison 
to the more general Boussinesq, Green-Naghdi, or Korteweg-de Vries theories, and 
in particular that  the former theory does not admit a solution for solitary waves (see 
Wehausen & Laitone 1960, p. 702). 

Following derivation of the general theory in $2, a number of applications of the 
theory are made in 343-5 which illustrate some of the advantages of the present 
approach. Section 3 deals mainly with nonlinear axisymmetric waves on vortex cores 
and a solution for a stationary solitary wave is obtained which reduces in one limit 
to the sech2 form suggested by Benjamin (1962). A brief preliminary discussion is also 
given in $ 3  on vortex rings and helical vortex waves. In $4, jump conditions across 
axisymmetric and helical vortex breakdowns are obtained, together with necessary 
conditions for the existence of breakdown of each type. A discussion is given in $5 
on a phenomenon referred to here as vortex buckling which does not seem to have 
been previously discussed in the literature. The idea, which is very similar to  the 
buckling of solid rods, is that a vortex will ‘bend when compressed axially if the 
amount of compression is greater than a critical amount, whose value depends upon 
the ratio of core radius to  axial length. Using a Hamiltonian version of the theory 
derived in $2, this notion of vortex buckling is theoretically verified and the 
relationship of critical compression to the ratio of core radius divided by axial length 
is derived. Before leaving this section, it is noted that, for brevity, the discussion in 
$53-5 focuses on new results obtained by use of the present theory and is not 
intended to  provide an overview of previous work done on these problems. 

2. Development of the general theory 
This paper is concerned with a theory for vortices as distinct fluid entities. 

Accordingly, we introduce a model for the vortex which has the form of a one- 
dimensional continuum structure, which we refer to  as a directed vortex filament, 
although it  clearly has the form of a Cosserat curve used in other contexts (e.g. Green, 
Naghdi & Wenner 1974). A directed curve model has its own balance laws and its own 
constitutive equations for dependent variables appearing in these balance laws. The 
general balance laws (equations (2.8)-(2.11)) are the same for all directed curve 
theories, whether applied to vortex cores7 fluid jets or elastic rods; only the 
constitutive equations, constraints on the independent variables, and body forces to 
which the directed curve is subject vary depending on the type of structure 
represented by the model. Typically, it is possible to rederive the equations of motion 
of the directed curve theory by an approximate procedure using the governing 
equations of the three-dimensional fluid continuum theory. Such an alternative 
derivation (a further description of which is given later in this section) is useful for 
motivating constitutive equations, constraints and body forces in the directed curve 
theory. Although the directed curve model may not be absolutely necessary for 
development of the equations of vortex motion given in this paper, use of the model 
offers three clear advantages : (i) It provides guidance and restrictions t o  development 
of approximate formulations from the three-dimensional theory. (ii) It provides a 
clear and concise kinematical structure for consideration of gross properties of the 
vortex, such as ‘external forces’ acting on the vortex and ‘internal momentum’ of 
the vortex. (iii) It provides a simple method of obtaining jump conditions across 
discontinuities which would otherwise be extremely difficult to derive. 

The kinematics and equations of motion for the vortex filament can be obtained 
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as a special case of the theory of Caulk & Naghdi (1979) for an inviscid elliptical jet 
with twist after (i) invoking a constraint requiring the directors to be oriented 
orthogonally to the vortex axis and (ii) modifying the ordinary and director-assigned 
force fields for the free jet (resulting from gravity) to  account for ‘external’ forces 
acting on the lateral surface of the vortex core. These external forces on the vortex 
are obtained by an extended version of the results obtained by MS. 

To be more specific, the vortex is modelled in this paper by a material curve W to 
which, at every point of W, we attach some number of vector-valued variables called 
directors. The curve W is chosen to be coincident with the centreline of the vortex 
core, and the directors are chosen to be orthogonal to each other and to the vortex 
centreline. The magnitude of the directors is identified with the core radius, and the 
rate of spin of the directors about the curve W is identified with the rotation rate of 
the vortex core times the core radius. Each material point on the directed vortex 
filament a t  every instant of time is assigned a position in space (t,he position of the 
vortex centreline), a velocity component parallel to  9 (the axial velocity in the core), 
velocity components normal to  W (velocity of the vortex normal to the centreline), 
two directors (whose magnitudes give the vortex core radius) and the material 
derivatives of these directors (which can be used to find the rotation rate of the 
vortex core). The goal of the present theory is to derive reasonable and fairly general 
equations of motion for the vortex (giving the change with time of the aforementioned 
quantities characterizing the state of the vortex), which take into account effects due 
to internal forces and momentum and external forces acting on the core surface 
(which may be caused by self-induced velocity of the vortex, external prescribed flow 
past the vortex, or radial pressure gradient in the irrotational flow surrounding the 
core). 

The balance laws for the directed vortex filament include equations for vortex 
mass density, ‘ordinary’ vortex momentum and ‘director ’ momentum. The vortex 
mass density is the mass of fluid contained in the vortex core per unit axial length. 
Ordinary vortex momentum is the integrated momentum across the vortex per unit 
length and may be oriented either along the vortex axis or normal to the axis. 
Director momentum may have components in both the radial and circumferential 
directions, which can be identified, respectively, with the radial inertia incurred 
during a change in core radius and with the product of the vortex mass, the core 
rotation rate and the core radius. 

2.1. Kinematics and balance laws for  the vortex filament 
The material directed curve W occupies a space curve % in Euclidian 3-space a t  time 
t ,  such that the position of a point X on %, relative to a fixed Cartesian coordinate 
system (x, y, z )  with base vectors (ez, e,, e,) is denoted by r. An alternate convected 
coordinate system (el, 02, 03) with base vectors (gl,g,,g3) is defined such that (0, 0, 03) 
denotes points on W (see figure 1). For convenience, we denote O3 by 6 and note that, 
since the O1 coordinates are convected, a material particle travelling along the vortex 
core will always have the same value of 6. 

A vortex core has a certain thickness and spin that must be accounted for in 
addition to the velocity and position of its axis, where the axis can be taken to 
correspond with the curve %. If the position vector of any point within the core is 
p ( @ ,  02, 03, t ) ,  where points on 55‘ are given by p(O,O, 03, t )  = r(6, t ) ,  we assume that 

(2.1) 

In (2.1), d, = ti&, t )  are called directors, 01 = (1,2) and the summation convention 

p(OU, 5, t )  = r(E, t )  + @%(E1 t ) .  
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FIGURE 1. Kinematics of vortex core showing fixed coordinate system (5, y, z), convected 
coordinates (Ol, 02, Oa), directors (dl, d,) and position vector I of the vortex centreline. 

over repeated tensor indices is assumed. The base vectors g, = Clp/aOi can be written 
using (2.1) as 

g, = d,, g ,  = ar/ag+Pad,/ag. (2.2) 

In the present paper, the directors d, are chosen to have dimensions of length, so that 
8' are dimensionless and g, also have dimensions of length, and the magnitude u of 
d, (for either 01 = 1,2) is identified with the vortex core radius. Because the 6, 
coordinate system is convected, the base vectors g, spin in conjunction with the 
motion of material line segments spanning the vortex core. 

Along the curve %', the base vectors g, are denoted by a,, where from (2.2) we have 

a, = d,, a, = ar/a& (2.3) 

and we note that a, is everywhere tangent to V .  The arclength ds of a material 
element d,$ of the directed filament is given by 

ds = (a,,);d,$, (2.4) 

where a,, = a3-a3 = q3,(P = 0). (2.5) 

It is apparent from (2.4) that (a,,): can be interpreted as the 'stretch' of material line 
segments along the vortex filament. 

It is often convenient to describe the shape of a space curve in terms of its 
curvature K and its torsion 7.  For this purpose, we define a unit tangent vector a,, a 
unit principal normal vector 1, and a unit binormal vector 1, of %' by 

11 FLM 229 
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The curvature and torsion may then be obtained from the Serret-Frenet equations 

The general equations of motion for a directed filament include equations for mass 
conservation, conservation of ordinary momentum, balance of director momentum 
and conservation of angular momentum. The local form of these equations is given 
by Green et a l .  (1974), using slightly different notation, as 

P@,$ = A, (2.8) 

AV = Af+an/ag, (2.9) 

(2.10) 

(2.11) 

A~"@I+@ = Al" - k" + ama/ag, 

a, x n + d, x k"+ ada/af x ma = 0. 

In (2.8), the mass p of the vortex filament per unit length is related to the constituent 
fluid density p* and vortex core radius u by 

p = xp*u2,  (2.12) 

and A = A ( [ )  is the mass of a differential material segment dg of the filament. In 
(2.9)-(2.10), u = Z and W, = da are the ordinary and director velocities of the filament 
and the symmetric tensor y"@ are inertia coefficients, such that the kinetic energy k 
per unit mass of the filament is 

k = $ ( U . U + ~ " @ W ; W , ) .  (2.13) 

A superposed dot denotes material derivative keeping f fixed, so that for any 
quantity f, 

f = df/dt = af/at+ ( U S A , )  af/as. (2.14) 

The forces acting on an element df of the directed filament, spanning from go to 
&, + d[, include ordinary and director contact forces n and m", respectively, acting at  
the end points f ,  and Eo + df, ordinary and director assigned forces f and 1" per unit 
mass acting within dg and an internal director force k" per unit length acting within 
d[ (see figure 2). The internal force k" is necessary to account for the fact that director 
momentum is not conserved. Since in this paper we do not account for the effects of 
gravity, magnetic forces or other standard 'body ' forces, the only contributions to 
f and 1" come through the external contact forces acting on the lateral boundary of 
the vortex core. 

In general, constitutive equations must be chosen for the response functions fa, 
n, ma and k" as functions of the independent variables p ,  u and d" and appropriate 
rates and gradients of these variables. These equations are usually motivated by an 
independent weighted-moment approach from the three-dimensional theory, such 
that the various forces in (2.9)-(2.10) are identified with certain weighted integrals 
of pressure and velocity gradients across the vortex cross-section or around the 
vortex circumference (see the Appendix of Caulk & Naghdi 1979). However, before 
making use of such results, we note that the independent variables are subject to 
several constraints, and we must therefore allow for the existence of indeterminate (or 
constraint) parts of the response functions. 
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FIGURE 2. Diagram showing a region 9* of the vortex core with lateral surface a9’: and end 
surfaces a9: and a9:. The various forces n, &,A P, k”, in the directed curve theory may be 
identified with weighted integrals of forces acting in the three-dimensional theory aa follows : (1) 
the contact forces n and & with moments of forces acting on a 9  and 3 9 ;  ; (2) the forces f and 
P with moments of forces acting on i39: (since no body forces are assumed to be present in the 
three-dimensional theory) ; (3) the internal forces k” with moments of forces acting inside 9 *. 

There are two constraints which are used in this theory. The first is due to 
incompressibility of the constituent fluid and can be shown (Caulk & Naghdi 1979) 
to take the form 

(eapdp x a,). w,+ (d,  x d,).au/ag = 0, (2.15) 

where eaF is the second-order permutation tensor. The second constraint requires that 
both directors d, and d, are oriented normal to the tangent vector a,, or that d,.a, 
vanishes. Taking the material derivative of this constraint, we obtain 

a,.w,+d,.au/ag = 0. (2.16) 

The treatment of the constraint (2.16) is similar to that of Naghdi (1980). 
A kinetic energy theorem for the filament can be derived from (2.8)-(2.10) as 

[n. v+ ma- w,]t + I” h ( f .  v+ P. w,) dg 
61 

where the mechanical power P per unit mass of the filament is defined by 

hp = no au/ag+ P. W, + m“. aw,/ag. (2.18) 

If we assume that n, m“ and k” y e  composed of the sum of constraint parts ii,W, 
kol and determinate parts fi, ha, k”, then the usual assumption that the constraints 

11-2 
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are 'workless' (Truesdell & Toupin 1960, pp. 600-602) together with (2.18) implies 

that n .av /a6+~.wa+ma.aw, /ag  = 0. (2.19) 

From (2.15), (2.16) and (2.19), it follows that n, ma and k" have the forms 

n = fi-pdl xd2+$da, ma = fi', k"=&-Pe ,Fd XU,+$U,, (2.20) 

where j~ = ~ ( 6 ,  t )  and @ = $(& t )  play the role of Lagrange multipliers resulting from 
the constraints (2.15) and (2.16), respectively. We note that the result (2.20) satisfies 
the moment of momentum equation (2.1 1)  identically. 

Using the weighted-moment approach from the three-dimensional theory, Caulk & 
Naghdi (1979) show that if the vortex filament is identified with the vortex axis, then 
the inertia coefficients are given by 

y12 = p = 0, p = y22 = a. (2.21) 

Also, since we are dealing only with inviscid incompressible fluid, the determinate 
parts f i ,  rir" and d. all vanish. 

Before proceeding further, it is necessary to note some additional kinematical 
results. It was mentioned previously that the director magnitude is set equal to the 
core radius and that the directors spin about the vortex axis. We define the vortex 
'spin' o = w(6,  t )  as the axial component of vorticity of a material line spanning the 
vortex core, so that 

d/dt(dl/g) = od2/2a, d/dt(d2/a) = - - ~ d , / 2 ~ r .  (2.22) 

The circulation r of the core is given by 

r = na2w, (2.23) 

and it will be found later that r= r(6) only, in accord with Kelvin's circulation 
theorem. From (2.22), we find that the director velocities w, and accelerations Wa are 
given by 

W, = 6dl/a+&d2, W, = 6d2/a-$d,, 
W ,  = (@/~-$2)dl+(&j+6~/a)d2, W 2  = ( b / a - - ' ) d 2 - ( ~ + ~ W / C r ) d l . )  '1 (2.24) 

Substituting (2.20) into (2.9)-(2.10) gives the ordinary and director momentum 
equations as 

( 2 . 2 5 ~ )  
(2.253) 
(2 .25~)  

In  anticipation of the form of 1, obtained in the latter part of this section, we assume 
that 

la = ld,/a, (2.26) 

where 1 is the magnitude of la. It is now desired to eliminate F and $ from (2.25a) 
with use of (2.25b, c).  We first take the scalar product of (2.253) with dl or of (2 .25~)  
with d, (either one gives the same result) and use (2.24) to  obtain 

&~h(b-@%) = aAl-p[d1d2~,], (2.27) 

where the scalar triple product in (2.27) is obtained using (2.8) as 

[dld2u,] = d2.(dl xu,) = -r2(a,,)f = -h/np*. (2.28) 
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Substituting (2.28) into (2.27) and solving for p gives 

p = -Irp*al+:Zp*a(d-&Pa). (2.29) 

Next, take the scalar product of (2.253) and ( 2 . 2 5 ~ )  with a, to get 

a“ = 0. (2.30) 
If we take the scalar product of (2.253) with d,, or of ( 2 . 2 5 ~ )  with d,, multiply by x 
and again use (2.24), we obtain the well-known result 

na(acj + 2ciw) = i. = 0, (2.31) 

It is convenient in what follows to write the velocity u in component form as 

u = ul,  + V A ,  + WA,, (2.32) 

where A,, A,, 1, are defined by (2.6). Taking the material derivative of (2.8) and using 
(2.12), (2.7), (2.5), (2.3) and (2.32), the mass conservation equation may be written 
in terms of the components of u in (2.32) as 

2&+~(aw/as--KU) = 0. (2.33) 

Substituting the results (2.29) and (2.30) for p and f into (2.25a) and using (2.7), 
(2.8) and (2.12), the momentum conservation equations become 

which implies that = r([) only, as stated previously. 

a 
as 

a%. 1, = a2f3 + - (a31 - ia3q. 

The left-hand sides of (2.34)-(2.36) are given by 

b.1,  = ir*+zlB*+vC*+wA*, 
where from the Serret-Frenet equations (2.7) we find that 

A ,  = i3.1, = au/as-7v+KW, A, = i3.1, = av/as+Tu, 
A,  = n’, a 1, = aw/as + 2 d / ~  KU, 

B, = A1.;l., = 2 8 / ( r - K / K + ( 1 / K ) a ~ , / a s - ( 7 / K ) A , + ~ ~ ,  

(2.34) 

(2.35) 

(2.36) 

(2.37) 

It is noted, however, that since A,, 1, and 1, are unit vectors, A,, B, and C, in (2.38) 
must vanish. Setting A, equal to zero yields the mass conservation equation (2.33) 
and setting B, and C, equal to zero yields 

*lK = 2+/a+ ( i / K )  aA,/as- ( 7 / K )  A,, +/T = 2 4 a +  ( K / T ) A 2 +  (1/7)a&/aS. 
(2.39) 

The results (2.33)-(2.36) provide equations for determination of a, u, v, w, given the 
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assigned force fields f and I " ,  and the kinematic results (2.39) provide equations for 
determination of K and 7.  

2.2. Assigned (external) forces f and I" 
The ordinary and director assigned forces f and 1" are related, respectively, to the 
integral and the fist moment of pressure about the lateral core surface dA. Letting 
the unit normal of the core surface 8A be denoted by v*,  the stress vector t acting on 

(2.40) i3A is given by 

where gi = (detg, .g,)f and the base vectors gd are defined in (2.2). The assigned forces 
can then be obtained as (Caulk & Naghdi 1979) 

t = Ti$ 9-4, V* = $gt, 

(T' do2 - T2 do'), hl" = &( T' do2 - T2 do1), (2.41) 

and for an inviscid fluid TI and T2 are proportional to pressure along the core surface. 
Prior to calculation off and I" from (2.41), it is necessary to introduce some 

assumption for the exterior flow field. It is thus assumed that in a region of radius 
R, where R B u, about the vortex core the exterior flow is irrotational and consists 
of some combination of the following four components : (i) a circumferential velocity 
r/2ncr, corresponding to a potential vortex, (ii) a radial velocity m/2xr, where 
m = m(s, t ) ,  corresponding to a line source, (iii) a prescribed uniform velocity uE, 
(iv) an induced uniform velocity u,. The total uniform velocity past the core is 
given by u = uE + uB. The induced velocity U, may be calculated in general by the 
Biot-Savart law with cutoff (see MS or LA), but in many cases we simply use the 
local-induction approximation of Arms & Hama (1965) in the form 

hf = I, I,, 

uB(s, t )  = ( r~ /4n) [ ln  ( ~ / K v )  + c] A,, (2.42) 

where C is a constant of order unity. It is also noted that the assumption that the 
prescribed velocity uE is uniform can be approximately satisfied whenever the 
typical lengthscale L over which velocity changes in the prescribed external flow is 
much greater than the core radius cr. In  the presence of the uniform external velocity 
u, the relative normal velocity q to the vortex filament is given by 

q = (u-v) - [ (u-v) .13]13 ,  (2.43) 

where t, is the filament velocity introduced previously. 

as 

Equation (2.44) is a slight modification of that derived by MS and is valid under the 
assumptions KU Q 1 and v /L  Q 1, where L is the typical lengthscale of either of the 
exterior flow components (iii) or (iv) listed previously. The first term in (2.44) is the 
Kutta lift force obtained when a solid cylinder of radius u spinning with circulation 
r travels with velocity q through a still fluid. It is of note that when a vortex filament 
is bent, the Kutta lift caused by the induced velocity field uB will act to resist bending 
and restore the vortex to a columnar position. The similarities between this effect 
and bending tension in solid rods is discussed by MS. 

The second and third terms in (2.44) are usually referred to as 'added mass' force 
and 'buoyancy ' force, respectively, although it may perhaps be more convenient 

An expression for the ordinary assigned force f on the vortex filament is now given 

n a y =  rq x 1, +xaa/at(uq) +~u'/at[au-u1,(u.1,)1 - ~ z a / a 4 c r 2 1 , ) .  (2.44) 
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simply to refer to the sum of the two as inertial drag. The time derivative 8f/8t in 
(2.44), for some quantity f, represents the rate of change off as measured by an 
observer travelling with the exterior velocity u and is defined by 

(2.45) 

Added mass force should exist both when q changes with time, so that the core has 
a non-zero acceleration relative to the external flow, or when a changes in time, in 
which case the core acts like a mass source or sink in a uniform flow q. LA assumes 
an added mass force proportional to a2Sq/8t, which neglects the latter effect. MS 
assume an added mass force of the form d(a2q)/dt but because they are interested 
primarily in constant-area vortices, they later neglect this term. The form of the 
inertial forces used in (2.44), although slightly different from those used by LA and 
MS, is derived by a careful analysis of the problem of irrotational flow past a cylinder 
where the cylinder radius, the cylinder velocity and the external flow velocity all 
vary in time. Some useful expansions of the inertial drag in terms of the coefficients 
defined in (2.38) are given in the Appendix. 

The last term in (2.44) is caused by the exterior pressure (incorporated in 1 )  acting 
on a gradient in core area, and for steady straight vortices this term is the same as 
the ‘axial force’ discussed by LA. For curved vortices, a part of this term acts in the 
1, direction (due to a gradient in A, ) ,  but this part is cancelled by a constraint force 
in (2.34) and has no dynamical significance. 

We now turn to calculation of the director-assigned force P. It has previously been 
stated that the present theory considers only circular vortices, and yet the pressure 
field set up by uniform flow q past the core will tend to make the core non-circular. 
We must therefore assume that the circumferential velocity is much larger than 141, 
and hence in calculation of P only the circumferential and radial components (i) and 
(ii) of the external flow field are considered. The unsteady Bernoulli equation (in the 
three-dimensional theory) can then be used to determine the pressure on the lateral 
core boundary as 

(2.46) 

In (2.46), the source strength m = 2na(8a/St) (which follows from assuming the no- 
penetration condition on the core boundary), a. is some reference core radius and the 
pressure is assumed to approach zero at infinity. Expressions for P are obtained using 
(2.41) which have the form (2.26) with I given by 

(2.47) 

It is noted that for constant a and for u . l ,  = 0, the final equations governing 
vortex motion in the present theory are found to be identical, apart from notation, 
to those of LA, even though our approach was much different. When a is not 
constant, the equations of the present theory differ somewhat from those of LA; 
however, most of the differences can be traced to the effects of radial inertia, which 
LA neglects. 
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3. Some elementary solutions 
3.1. Vortex ring 

The classic solution by WB for a steady vortex ring with axial velocity w, namely 

can be obtained from the momentum equation (2.34) with induced velocity uB given 
by 

24, = (T~/4n)[ln (8/KU)-i] 1 2 .  (3.2) 

The expression (3.2) for induced velocity follows from the local induction 
approximation (2.42) with C = In (8)-9 and is the same as that used by MS. LA add 
to (3.2) an additional term (T~/16x)  A,, which is supplied by an internal constraint 
force in the present theory. 

3.2. Helical wave8 
A helical wave with displacement amplitude D,  'pitch' y o ,  wavenumber y and axis 
along the z-direction is specified by 

I r = De,-yDze,+ze,, 1, = -er,  1, = - ee + Y D ~ ,  
( 1 + y2D2)i ' 

Y 
1 + y2D2 * 

DY2 7 = f  
- ?Dee + e, 
(1 + y2D2)) ' 1 + y W '  

K =  1, = 

(3.3) 

For a steady wave with u = 0 and uniform g, w and v along the vortex length, the 
momentum equation (2.34) yields a solution for the velocity component v as 

472 " (  K 7cU2 7 272 v = - 7wB+27w+-vB-- 

2T2 r 1 6r3 8T2rV,  T 2 r 2 ) r ,  (3.4) 
7WB + 27w + - VB --)2- (8r"w' +-wB vg --- - 

K nu2 K RU2K 2 X W  

where we set 

The classic solution of a helix with small pitch, yD 4 1 (Kelvin 1880), can be 
obtained from (3.4) by setting 

UB = U B  11 + VB 1 2  + wB1.3. (3.5) 

VB = -[ln r y 2 D  1 $ 1  -c,], WB = 0, C, = 0.5772 . . . , 
47c 

and linearizing appropriately. In the other extreme of very large pitch (yD+ OO), the 
solution for v in (3.4) approaches the vortex ring solution (3.1). (The author is 
grateful to a referee for suggesting this limit.) 

For large values of yD, it is found that the induced velocity uB may be neglected 
in (3.4) so long as ( y ~ ) ~  < 1, where we assume that vg = O(ry2D) 2 O(w,). This case, 
which might be called a 'no-induction ' approximation, would correspond to a typical 
situation in which yD < O(1) and D / u  % 1 ,  and i t  seems to agree with an observation 
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made by LA to the effect that the induced velocity had little effect on their numerical 
computations of unsteady helical waves of finite pitch. Thus neglecting vB and wB 
and defining a 'swirl number' SZ = 2rcwa/r, the solution (3.4) for v may be written 
as 

The solution (3.7) is the same (except for notation) as that given by LA in the absence 
of induced velocity. Since we expect 7 = O(y) ,  it follows from our previous 
assumption (ycr)' $ 1 and from (3.7) that v is imaginary (which implies that a steady 
helical wave cannot exist) whenever 

SZ > (42-l)/7cr or SZ < - ( 4 2 + 1 ) / 7 a .  (3.8) 

The results (3.8) are the same as the criteria found by WB for instability of a straight 
vortex with axial flow. 

3.3. Axisymmetric solitary waves 
The problem of axisymmetric waves on a vortex core is considered in this section 
with the simplifying assumptions of a straight vortex filament and a stationary wave 
field with no external axial flow, for which case (2.34)-(2.35) are satisfied identically 
and (2.33) and (2.36) become 

2Wd+fJW' = 0, ( 3 . 9 4  

(3.9b) 

where a prime denotes differentiation with respect to s. Integrating ( 3 . 9 ~ ~  b)  gives 

RWIY' = Q, ( 3 . 1 0 ~ )  

(3.10 b)  

where Q and S are constants of integration and cro is the equilibrium core radius. 
Multiplying (3.10 b)  by 8x2u'/Q2cr3 and integrating again, we obtain 

(a')"+a(a) = 0, (3.11) 

where (3.12) 

and R is another constant of integration. 

that from (3.10)-(3.12) we obtain 
For a solitary wave, cr' and d' must vanish far from the wave peak (as ~ - + m o )  so 

(3.13) 

Since (a')' is non-negative for all real d, it follows from (3.11) that Q(V) must be non- 
positive for all admissible values of (r. Also, since the peak of the solitary wave 
coincides with a local maximum in cr, from (3.11) we find that the maximum core 
radius nmax must be a root of q(a). 



324 J .  S. Marshall 

-2  -1 0 1 2 

Axial distance, z/uo 

FIQURE 3. Core radius profiles of stationary axisymmetric solitary waves for various Q:, 
calculated from (3.11) and (3.14). 

Defining the equilibrium swirl number by 52, = 27ca, wo/&, which is the value of 
52 in the absence of axisymmetric waves, then q(cr) in (3.12) may be rewritten using 
(3.13) as 

a2-2, (3.14) 

where a = a/ao is the core radius ratio. The equilibrium solution a = 1 is a root of 
q for all values of 52;; however, in order for a solitary wave to exist there must be 
some real root a,,, > 1 of q, and q must be negative for 1 < a < a,,,. Using (3.14), 
i t  is thus found that stationary solitary waves are possible if and only if 52: lies in the 
range 

;<a:< 1. (3.15) 

The wave profile is calculated numerically using (3.11) and (3.14) and is plotted in 
figure 3 for various values of 52:. For l.2: greater than about 0.8, the wave appears to 
be quite peaked, and it may be expected to become unstable for 52: sufficiently near 
1 ; however, the instability problem is not pursued in this paper. An asymptotic 
solution for a as 52;+0.5 can be found from (3.11) and (3.14), using standard 
procedures, as 

(3.16) 

Equation (3.16) is similar to the standard sech2 solution for solitary surface waves in 
shallow water, and it  appears to be of the same form as the solution of Benjamin 
(1967) for moderately small-amplitude axisymmetric waves on straight vortices. A 
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Square of initial swirl number, a: 
FIGURE 4. Amplitudes of stationary exisymmetric solitary waves as a function of 52: and regions 
in which such waves can and cannot exist: -, numerical solution from (3.14); -.-.-, 
asymptotic solution from (3.16) for Sai+0.5. 

comparison between the values of a,, predicted by the asymptotic solution (3.16) 
and the full equation (3.14) for q(a) is given in figure 4, and it is found that the 
solution (3.16) deviates considerably from the exact solution for 52; > 0.6. 

4. Vortex breakdown 
A ‘vortex breakdown ’ is a point at which the vortex undergoes a sudden transition 

from one state to another. The phenomenon is in many ways analogous to a 
hydraulic jump (Benjamin 1962, 1967) or to a shock in gas dynamics (LA). A vortex 
core may exhibit two major types of breakdowns - helical and axisymmetric - 
although variations of these types have been observed (Sarpkaya 1971). In 
axisymmetric breakdowns, a large ‘ breakdown bubble ’ forms with a complicated 
and often turbulent flow inside. A straight vortex section is observed downstream of 
the bubble, which may later transform into a helical wave. In helical breakdowns, 
the core undergoes a sudden (almost instantaneous) transition from a straight vortex 
to a helical wave, and the helix appears to have a nearly constant radius immediately 
after the breakdown. Helical breakdown differs from helical instability of a straight 
vortex in that there seems to be no observable slow growth of unstable helical waves, 
but rather a rapid transition from one fully developed state to another. 

In this paper, we model both types of vortex breakdowns as discontinuity points 
on the vortex (an idea first suggested by LA). For helical breakdowns, such a model 
seems to be quite appropriate ; however, for axisymmetric breakdowns the ‘shock ’ 
model may be too simplistic in many cases. For instance, when a large breakdown 
bubble exists, the shock model is clearly inappropriate in cases where the flow 
upstream is unsteady because the model predicts instantaneous transmission of 
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information across the bubble, which is not realistic. For such cases, which will not 
be considered here, i t  may be more appropriate to formulate a model similar to that 
used for acoustic wave propagation through a cavity. Secondly, it is well known that 
the bounding surface of the breakdown bubble is not material and that fluid streams 
into the downstream side and out of the upstream side. It is thus not entirely clear 
that the assumption of mass conservation at  the 'shock' is justified. However, for 
axisymmetric breakdowns with uniform-core vortex sections, the predictions of LA 
(who assume mass conservation a t  the 'shock') compare well with data, and we shall 
also make this assumption in the present paper. 

4.1. General jump conditions 
A point of discontinuity P is assumed to exist on the vortex filament for all time t .  
The velocity V of P is given by 

V = u l ,  + Wl, + WA3, 
so that V and the velocity u of a material particle a t  P differ a t  most by the axial 
component. The jump conditions across P can be derived from the global balance 
laws of the filament (Caulk & Naghdi 1979) and are given by 

} (4.1) 
b ( w -  w)n = 0, b ( w -  w) v-n]  = F, b(w- w) y " p w p - m q  = L", 

b k ( w - W W ) - n * ~ - m ~ . w J  = @ + F .  V+L"* W,, 
where the notation [f] = f' -f- for any quantity f. The terms F, La and @ on the 
right-hand sides of (4.1) represent the supply rates to the discontinuity of ordinary 
and director momentum and of kinetic energy, respectively. The internal energy 
term usually appearing in the energy jump condition has been lumped together with 
@, and we interpret - @ as the energy dissipation rate a t  P and F. V+ La. W, as the 
rate of work supplied to P by external forces. The director velocity W, associated 
with the discontinuity point P may be related to the rate of change of the breakdown 
bubble radius and is found to vanish in nearly all cases of interest. The mass, 
momentum and energy jumps in (4.1) may be rewritten with W, = 0 and using the 
various results (2.12), (2.13), (2.20), (2.24) and (2.29) for p, k, n, ma and w, as 

[a"w-W)] = 0, ( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  
4.2. Axisymmetric vortex breakdowns 

The rate F of momentum supply to the discontinuity is assumed to be a result of an 
integrable singularity in the external assigned force f a t  P. Letting s; be a point just 
below and s: a point just above the discontinuity point P ,  located a t  so, we can then 
write 

F =  r p f d s .  - (4.3) 
$0 

For a straight vortex with no axial external flow, substitution of (2.44) into (4.3) 
gives 

where r is continuous across the jump. 

F = - (p*r2/4n)[ln (a)] A,, (4.4) 



Curved vortices with circular cross-section and variable core area 327 

For a straight vortex u = v = 0 and, after using (4.4) and the result (2.47) for 1, the 
jump conditions (4.2) become 

[ayw-  w)i = 0, (4 .54  

+ ia36w 

Equations (4.5a, b) can be used to solve for W and the jump in w across the 
discontinuity and ( 4 . 5 ~ )  can then be used to solve for 0. Also, in what follows we 
assume, as a necessary condition for vortex breakdown to exist, that the energy 
dissipation rate must be positive. When w > 0, this condition implies that @ < 0. 

The typical axisymmetric vortex breakdown is observed to  occur between two 
sections of approximately uniform, but different, core radius. Setting arr/as = 
aa/& = 0 in (4.5) and solving for W, w2 and @ (where the subscripts 1 and 2 denote 
the upstream and downstream sides of the jump, respectively, assuming that w 2 0) 
gives 

( 4 . 6 ~ )  

(4.6b) 

For each (al, uz) pair, there are two values each of W, w2 and @, corresponding to 
left- and right-running shocks. Equations (4.6a, b) are identical (apart from notation) 
to the results obtained by LA, and a comparison between the predictions of (4.6a, b) 
and experimental data of Garg & Leibovich (1979) is given by LA, showing fairly 
good agreement. 

For a stationary shock, we set W = 0 in (4.6) to obtain equations for a2/al and @ 
as 

(4.7) (1 - a:/ui) SZ: = In (uz/ul), 

- 1 p*r3521 6n2u1 @ = (1 -3) [ (1 +$) SZ; - 11, (4.8) 

where SZ, = 2nw1al/r is the upstream swirl number. Values of az/ul and 
- 16n2u1 @/p*r3SZl from (4.7)-(4.8) are plotted versus SZ; in figure 5 .  It is noted that 
the existence condition @ < 0 yields 

52; 2 ; (4.9) 
as a necessary condition for stationary vortex breakdowns of this type. The energy 
dissipation rate in figure 5 for l2; in the range < a:< 1 is very small, and so the 
breakdown bubble might also be expected to be small in this range. 
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0 1 3 4 5 6 7  

Square of upstream swirl number, Qi 
FIGURE 5. Core radius ratio (-) and nondimensional energy dissipation rate (---) in stationary 

axisymmetric vortex breakdowns as a function of the square of the upstream swirl number. 

It has been suggested in the literature (Benjamin 1962) that stationary 
axisymmetric waves may form downstream of an axisymmetric vortex breakdown, 
although reliable experimental confirmation of this effect still seems to be lacking. 
Equations (4.5) may be used to find the jump conditions across a stationary 
axisymmetric breakdown with downstream waves as follows : 

- (") 52; [ 2 - a, 2 (3-y]. au, 2 u2 
(4.10 6) 

The first and second derivatives of u2 in (4.10) can be related to  various flow 
constants as shown in $3.3. Sample calculations from (4.10) for the special case in 
which the point immediately following the discontinuity is a local maximum of the 
downstream wave field (i.e. au2/as = 0, a2a,/as2 < 0) indicate that the effect of 
downstream waves is to  slightly increase both a2/gl and - 16n2a, @/p*r352, over the 
values given in figure 5. 

4.3. Helical vortex breakdowns 
For helical breakdowns, we assume that u is uniform on both sides of the 
discontinuity but admit the possibility that both u and r may be discontinuous 
across the breakdown point. The upstream vortex circulation is transformed into 
both circulation of the downstream vortex and rotation of the helix about its axis ; 
thus, discontinuity of r a t  the breakdown point is a necessary consequence of 
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Kelvin’s circulation law. The momentum supply rate F to the discontinuity point is 
obtained from (4.3) and (2.44) for helical breakdowns as 

and the jump conditions (4.2) then become 
nayw- w)1 = 0, 

(4.11) 

( 4 . 1 2 ~ )  

(4.12 c) 

It is convenient to express our solution in terms of the circulation ratio C, the core 
radius ratio a and the swirl numbers Q,, Q,, and Q,, defined by 

Using the expressions for 1, and 1, given in (3.3), the jump conditions (4.12) yield the 
following results : 

(4 .14~)  1 
aC 52, = Q,+-(Q,-Q,), 

4a2Q1(Q, -Q,) - (2a2 - C2) 
4a2CQ,(Q1-Qs)-a2(2C2-a2) 1 ’  (yD)2 = - 1 + 

(4.14b) 

(4 .14~)  

-6+1)]. (4.14d) 

Typical experimental observations (e.g. Sarpkaya 1971) of helical breakdowns do 
not exhibit large or even noticeable recirculating ‘bubbles ’ at the transition point, 
and it may therefore be interesting to examine the case in which no energy is 
dissipated at  the discontinuity point (i.e. 0 = 0). If we further specialize to 
stationary breakdowns (i.e. 51, = 0), the results (4.14) yield 

For each value of a, there is only a limited range of Q; which yields real values of yD 
and C. The various regions in (a, Q;)-space in which helical breakdowns are possible 
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Core radius ratio, a = u,/u, 

FIGURE 6. Regions in (a,SZ:)-space in which stationary helical vortex breakdown is possible 
(shaded) and not possible (unshaded) without energy loss at the breakdown point. Notice that the 
regions a > 1 and a < 1 are discontinuous. 

are shown in figure 6, and we notice considerable differences in these regions for the 
ranges a < 1, a = 1 and a > 1. For a = 1, stationary helical breakdowns are found to 
be possible only for 52: in the range < 52: < i. For t < a < 1, distinct upper and 
lower bounds on 52: are found for existence of helical waves, and the limit of the lower 
bound as a + 1- is 52:, mln --f 4. No stationary helical breakdown can occur for a < or 
for 52: < t. For a > 1, there is no upper bound on 52: for existence of helical waves, 
and the lower bound increases monotonically with a. Of course, all of the statements 
apply only for stationary breakdowns with no energy dissipation at the jump, as we 
have previously prescribed. 

The case a = 1 is of particular interest both because core radius appears to be 
nearly continuous across helical breakdowns in many, though not all, experimental 
situations and because it lies at the transition between two distinct regions in figure 
6. Setting a = 1 in (4.15) we obtain 

(4.16) 

For all values of Q: for which helical breakdowns may occur ( f  < 52; < Z), the sign of 
v 2  is the same as the sign of 70, assuming positive w. 

5. Vortex buckling 
In  this section, we consider the problem of an initially columnar vortex which 

spans a length Lo along the normal between two parallel impermeable plates. The 
problem is studied in the context of inviscid flow, and so the no-slip condition at the 



Curved vortices with circular cross-section and variable core area 33 1 

(b) (4 
FIQURE 7. Schematic diagram showing unbuckled and buckled shapes of an initially columnar 
vortex, with closed loops indicating internal circulation of the vortex in the direction of the arrow 
and open loops indicating circulatory motion of the vortex axis: (a) unbuckled shape, ( b )  mode 1 
buckled shape with one end fixed, (c) mode 2 buckled shape with both ends fixed. 

plates is not applied and there is no axis1 velocity within the vortex. The initially 
steady vortex is ‘ compressed ’ by decreasing the distance between the plates by an 
amount Az, and we examine the resulting state of the vortex via a variational 
theorem of Hamiltonian form constructed from the vortex theory in $2. It is found 
that if Az/L,  exceeds a critical amount, whose value depends on a,/L, and on the 
conditions imposed at the ends, the vortex will bend or ‘buckle’, whereas if Az/L,  is 
less than this critical value the vortex will remain columnar. A schematic of the 
hypothesized buckled vortex shapes and motions is given in figure 7 for the cases in 
which one end is fixed and the other is free (mode 1) and that in which both ends are 
fixed (mode 2). The idea of buckling of fluid structures has some precedent in the 
literature (e.g. Taylor 1968; Cruickshank & Munson 1981), but these studies focus on 
buckling of highly viscous (non-rotating) jets. The hypothesis of inviscid vortex 
buckling is treated only theoretically in the present paper; the necessary 
experimental verification of the phenomenon is still lacking. 

5.1. General variational theorem for inviscid vortices 
A criterion for vortex buckling is derived in the latter part of this section with the 
use of a general variational theorem for inviscid vortex motion. The variational 
theorem can be obtained by an extended version of the derivation given by Serrin 
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(1959, pp. 14&147) for general variational principles in incompressible inviscid flows, 
to  which the reader is referred for a more detailed discussion. 

Let us first assume some reference state r = r(6, t) and d, = da(& t )  for the vortex 
at time t .  We further admit a t  every point on the vortex a virtual displacement 
Sr = Sr(6, t ; 6) and a virtual director displacement Sd, = ad,(& t ; E ) ,  such that the 
reference state is regained when E = 0. As the parameter e is varied, a family of 
possible states of the vortex is traced out, and we assume that vortices in this family 
are continuous and differentiable with respect to spacial and director variables and 
to  e .  The membership of this family of vortex states is further restricted to  values of 
Sr and ad, satisfying mass conservation, the incompressibility constraint, the 
constraint that the directors remain normal to the vortex axis, and the boundary 
conditions on the vortex, as well as the requirement of vanishing mechanical power. 
It is the function of the variational theorem to determine which member or members 
of this family of states, if any, satisfy the momentum equations (2.9) and (2.10). 

The virtual work SU and the virtual change in kinetic energy SK are defined by 

6U = 1; Af Sr df[+ [ A P -  Sd, dg + [n. Sr]k + [ma. Sd,]k, 

Taking the scalar products of 6r and Sd, with the ordinary and director momentum 
equations (2.9) and (2.10), respectively, adding the resulting equations and then 
integrating over the interval it can be shown that both a necessary and 
sufficient condition for any member of the family of vortex states to satisfy the 
momentum equations is that Sr and Sr, satisfy 

" A( u- Sr + y%v; ad,) d5- 6K - SU = 0. s, (5.3) 

If we further restrict the family of virtual vortex states to those in which both Sr and 
Sd, vanish everywhere a t  two times to and t , ,  then integration of (5.3) yields 
Hamilton's principle in the form 

S (K+U)dt=O.  SI,' (5.4) 

Equation (5.4) indicates that  the integral of K +  U from to to t, for the 'actual' state 
is a local extremum or inflexion point of that  for neighbouring virtual states, but in 
fact it is always found in dynamics that the 'actual ' state corresponds only to  a local 
minimum of this integral. 

5.2. A criterion for  vortex buckling 
In developing a criterion for vortex buckling, we assume the existence of a family of 
virtual states satisfying the requirements stated in the previous subsection as 
necessary for satisfaction of Hamilton's equation (5.4). At time to, the vortex exists 
in the initial uncompressed state, and when the vortex is compressed by an amount 
Az i t  adopts one of the family of virtual states, which we call the final state. The 
differences in r and d, between the initial state and the actual final state are denoted 
by Ar and Ad,, and the differences in r and d, between the actual final state and other 
members of the family of virtual states are Sr and Sd,. Assuming that A(K+ U )  is 
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constant in the final state and letting the time interval ( t , , to )  be much longer than 
that required for the vortex to transform from its initial to final state, it follows from 
(5.4) that A(K+ U) achieves a local minimum in the actual final state. The criterion 
for buckling is obtained by comparing A(K+ U )  for an unbuckled final state with that 
for a chosen buckled state, both of which satisfy the momentum equations 
(2.9)-(2. lo), and assuming that buckling occurs whenever 

(5-5) 

The approach outlined above parallels classical approaches for buckling of solid rods. 
The assumption (5.5) can be justified using the Lyapunov instability theorem for 
continuous systems (Dym 1974). In  this approach, a Lyapunov functional V is 
defined by 

From the kinetic energy theorem (2.17) and various other results in $2, we find that 
for sufficiently slow compression rates, the time derivative of V is given 
approximately by 

A(K+ U)buckled < A(K+ U)unbuckled* 

= A(K + U)buckled -A(K + U)unbuckled. (5.6) 

Assuming that u 2 0 and that uB has the same form a5 given by (3.2), we find from 
(5.7) that < 0. If the condition (5.5) is not satisfied, V and V will have opposite signs 
for all perturbations of the unbuckled state, and it then follows from Lyapunov’s 
stability theorem that the vortex is stable (with respect to some suitably defined 
metric of the perturbation space). If (5.5) is satisfied, then there will exist some 
solutions for which V and V will have the same sign for arbitrarily small perturbations 
of the unbuckled state, and for this case it follows from Lyapunov’s instability 
theorem that the vortex is unstable. It should be noted, however, that the approach 
used in this paper produces only a sufficient, but not necessary, condition for 
buckling. This shortcoming results from the fact that there is no assurance that the 
vortex buckles according to the selected buckled state and does not acquire some 
other buckled state which also satisfies (2.9)-(2.10). In other words, it is possible that 
multiple modes of buckling may exist (with a given set of boundary conditions), and 
we do not know that the chosen mode will buckle first. 

For the case in which the vortex remains columnar during compression, the core 
radius u and change in kinetic energy AK after a compression of amount Az are 
obtained from the incompressibility requirement u2L = const and (2.8), (2.12), 
(2.21), (2.24) and (5.2) as 

CT’ = CT;L,/(L,-AZ),  (5.8) 

From (5.1) and various of the results in $2, the work AU done in going from the initial 
to the final state is 

(5.10) 

where L = Lo-Az  is the compressed vortex length. 
In the buckled case, it is assumed that the vortex length L and core radius u are 

unchanged during compression, so that L = L o  and u = u,,, and the filament 
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curvature K is not everywhere zero. We adopt a particularly simple buckled state in 
which r = u = w = 0,u = constant and v and K are given by 

v = ( r ~ / 4 n ) [ l n  )8/~al -a], (5.11) 

In (5.11), A is a constant, s is measured from the bottom surface and n is defined such 
that n = 1 for mode 1 and n = 2 for mode 2 type buckling (see figure 7).  The buckled 
shape (5.11) is found to be an approximate solution of (2.33)-(2.39), which govern the 
vortex motion, when KL 4 1, and in the remainder of the discussion we will restrict 
ourselves to this 'small curvature ' limit. The compression amount Az is related to the 
curvature K by 

K = -A sin ($n s /L) .  

(5.12) 

Substituting the expression for K in (5.11) into (5.12) and integrating gives an 
equation for A as 

A = - ( A Z / L ) ~ [ ; -  (2ln.n) sin (~n7c)l-f. (5.13) 

Also, the radial displacement r = r ( z )  of the vortex centreline during buckling is 
given by 

r = ( ~ L / ~ X ) ~ A  sin (inn z /L) .  (5.14) 

The kinetic energy, which is now due not only to the rotation of the vortex but also 
to the induced bulk motion of the vortex as a whole, is increased from its value in 
the initial state by an amount 

nz 
2L 

AK= A2r,'*u2 1 sin2 ($q) {a+ In [iAu sin (+nn7~7)]}~ d7. (5.15) 

From (5.1) and various of the results of $2, the work AU exert.ed on the buckled 
vortex during compression is 

p*r2A2L3 3 
AU = + - p * r 2 ~ ~ .  

8z3n2 16n (5.16) 

Substituting (5.15), (5.16), (5.9) and (5.10) into (5.5), using (5.13) and again 

(5.17) 

assuming that KL 4 1, the criterion for vortex buckling becomes 

1 > (2/nz) sin (inn) +~z2n2(ao/Lo)21(u, /Lo,  Az/Lo), 

where I(uo/Lo, Az/L,) is defined by 

For values of uo/L,  and Az/L, in the range of interest, the integral in (5.18) can be 
approximated by 

(5.19) 

(Comparison of (5.19) with numerical solutions of (5.18) yields an error of less than 
5% when the argument of the natural logarithm in (5.19) is less than 0.5.) 
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Core radius to length ratio, uo/Lo 

FIQURE 8. Stability regions for vortex buckling as predicted from (5.20). 

Substituting (5.19) into (5.17) and solving for Az/Lo gives the compression length for 
which vortex buckling would occur as 

2  sin (+n)]exp{ - L o [  1 --sin 2 (&x) ]3 .  (5.20) Lo n7c uo 2 nx xn uo nx 

The predicted value from (5.20) of Az/Lo at buckling is plotted in figure 8 as a 
function of uo/Lo for both n = 1 and n = 2. We note from the results in figure 8 that 
vortex buckling will always occur first in mode 1 (n = 1) unless the ends are 
constrained such that mode 1 is not possible. It is found that a compression Az of less 
than 10% of the initial vortex length is sufficient to cause buckling for ao/Lo less 
than 0.076 (for n = 2) or 0.086 (for n = 1). The critical compression drops rapidly for 
smaller values of uo/LO, becoming less than 1 YO of the initial length for a,/Lo less 
than 0.057 (for n = 2) or 0.064 (for n = 1). For uo/Lo greater than 0.095 (for n = 2) 
or 0.102 (for n = l) ,  the compression necessary to produce buckling exceeds the 
limitations of the linear theory. 

It may be useful at this point to briefly summarize the physical processes 
underlying the vortex buckling phenomenon. As a vortex is compressed, it has the 
choice of adopting either a buckled or an unbuckled state. In the unbuckled state, 
work is done on the vortex during compression as the core radius expands and the 
kinetic energy decreases owing to the shortened vortex length. In  the buckled state, 
the kinetic energy is increased owing to the induced motion of the vortex and work 
is also done on the vortex as the curvature is increased against the internal constraint 
force in (2.34). Additionally, some work is done on the vortex at the end points which 
in the small-compression limit is the same for both buckled and unbuckled states and 
hence does not contribute to (5.20). From stability considerations, it is found that the 
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vortex chooses whichever of these states has the smallest value of the change in 
kinetic energy plus work done. If we were to neglect the increase in kinetic energy due 
to induced motion of the vortex in the buckled state and the work done by the 
internal constraint force during bending, we would find that the vortex would buckle 
for any value of Az. Alternatively, if we were to neglect the work done by fattening 
of the unbuckled vortex, we would find that the vortex can never buckle. Considering 
all of these effects, however, it is found that a discrete non-zero, but finite, buckling 
point exists such that when the compression A z l L ,  is sufficiently small the vortex will 
remain columnar, but when AXIL, increases past a critical value, given by (5.20) as 
a function of cr,/L,, the vortex will buckle. 

6. Conclusions 
The vortex theory developed in $2, as well as the jump conditions in $4.1 and the 

variational theorem in $5.1, are used in this paper to examine several important 
problems in vortex dynamics. A number of new results, both mathematical and 
conceptual, with regard to  these problems havc been found in the paper, and for 
clarity these results are briefly summarized in this final section. 

One of the major focuses of the paper is to obtain an improved description of 
nonlinear axisymmetric waves, and a discussion of this problem is given in $3.3. The 
general theory is used to solve for stationary axisymmetric solitary waves on the 
core, and i t  is found that such waves can only exist when the square of the swirl 
number 52; lies between 0.5 and 1. For 52; close to 0.5, an asymptotic solution for core 
radius is found which has the classic sech2 form, but this solution deviates 
substantially from the true solution for SZ; above 0.6. The axisymmetric solitary 
wave solution obtained here is of particular importance both because of the common 
observation of such waves in vortex flows (Maxworthy et al. 1985) and because a 
solution for axisymmetric solitary waves cannot be obtained from the theory of LA 
owing to  the neglect of radial inertia. 

Jump conditions across axisymmetric and helical vortex breakdowns are derived 
in $4. The jump conditions for axisymmetric breakdowns between uniform core 
vortex sections reduce to those of Lundgren & Ashurst (1989). The rate of energy 
dissipation at the breakdown point is also calculated, and it is found that stationary 
axisymmetric breakdowns can only occur when the square oE the upstream swirl 
number is greater than 0.5. Jump conditions are also given for the case when an 
axisymmetric downstream wave field exists behind the breakdown point. 

The jump condition for helical breakdowns indicate that a stationary helical 
breakdown can exist with no energy dissipation a t  the jump for appropriate ranges 
of SZ;. The core radius may be either continuous or discontinuous across such a jump, 
but the vortex circulation must be discontinuous. The range of SZ; in which 
stationary helical breakdowns can exist depends strongly on the jump in core radius 
cr across the discontinuity, and in particular, in the common case in which is 
continuous across the breakdown, existence of the breakdown requires that 52; fall 
between t and t. The jump conditions across the breakdown point yield solutions for 
the jump in vortex circulation across the discontinuity and for the pitch and 
circumferential velocity of the downstream helical wave. 

I n  $5 it is shown, with use of a form of Hamilton’s variational theorem for inviscid 
vortex motions, that  an initially columnar vortex will buckle when it is compressed 
by an amount A z / L ,  which is greater than some critical value. A sufficient criterion 
for buckling is obtained which allows us to solve for the critical value of A z l L ,  as a 
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function only of the ratio a,/L, of core radius to vortex length and the boundary 
conditions at the vortex ends. For values of cr,/L, in the range 0.057 < a,/L, < 0.095 
(with both ends of the vortex fixed) or in the range 0.064 < a,/L, < 0.102 (with only 
one end of the vortex fixed), the value of Az/L,  necessary for buckling varies from 
0.01 to 0.3. For a,/L, much below this range extremely small Az/L,  will cause 
buckling, and for a,/L, much above this range no buckling will occur within the 
confines of the linear theory. The major physical processes influencing vortex 
buckling are discussed at the end of 85.2, but more experimental and theoretical 
work is needed to come to a complete understanding of this phenomenon. 

It is noted in closing that the assumption of circular core cross-section would not 
be expected to remain valid when the magnitude of the external prescribed flow is 
comparable in magnitude with the circumferential velocity on the outer edge of the 
core. The shape of the vortex cross-section is known to sometimes have a strong 
effect on the vortex behaviour, which is particularly evident in problems involving 
vortex instability in an external straining flow (Moore & Saffman 1971). We note that 
the theory of Caulk & Naghdi (1979) for the internal core dynamics is already given 
for elliptical cross-sections, and extension of the MS derivation of the external forces 
acting on the vortex involves only the use of straightforward solutions for 
irrotational flow past rotating elliptical bodies. The method of derivation of the 
vortex theory in this paper is thus practically the same for circular or elliptical cross- 
sections, the main difference being that the resulting equations for the elliptical case 
would be expected to be considerably more complicated than for the circular case. 

Appendix. Expansion of inertial forces 

coefficients A,, B, and C, defined in (2.38) is given as follows: 
A useful expansion of the inertial terms appearing in (2.44) in the terms of the 

6 6 
6t 6t 

xa-(aq) +7ca-[au-al3(u.1,)]  

where u and v are written in terms of their components as 

v = v,A,+vzrzz+v3A3, u = ulA,+u,A,+u,A,. (A 2)  
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